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We study the stability of the cylindrical Couette flow in nematics when the director 
is parallel to the rotation axis. The contribution of the inertial coupling of velocity 
fluctuations (responsible for the Taylor instability in isotropic liquids) is shown to be 
destabilizing when the inner cylinder rotates faster than the outer one. However, the 
instability remains driven by the mechanisms first discovered by Pieranski & Guyon 
for the plane shear case and quite specific to nematics. This mechanism couples the 
different orientation fluctuations via viscous torques and the corresponding threshold 
is given by 

where r0 is the time constant for the diffusion of orientation fluctuations. The con- 
tribution of inertia terms is measured by 2w, T,, where T, is the time constant for the 
diffusion of velocity fluctuations. I n  usual nematics one has Tv/To N so that 
corrections due to rotation are small in general. At different stages of the discussion 
differences between the case of nematics and that of isotropic liquids are pointed out. 
We also study the possibility of an oscillatory instability when a3 is positive and large, 
where no stationary instability can occur. 

f l o w  1, 

1. Introduction 
Nematic liquid crystals are ordered fluids made of elongated molecules aligned 

along a preferential direction. This mean orientation is a novel degree of freedom 
which adds to the usual set of hydrodynamic variables used to describe isotropic 
liquids. The continuous theory of nematics has been worked out by Frank (1958), 
Ericksen (1960), Leslie (1968), Parodi (1970); for a review see de Gennes (1974) or 
Stephen & Straley (1974) ; equations have been summarized a t  the beginning of 
appendix A. The coupling between orientation, labelled by a unit vector n called the 
‘director ’, and the flow has a very complicated structure; only certain simple situations 
are tractable which derive from symmetry considerations. 

In a shear flow one can distinguish three fundamental positions for the director 
(Miezowicz 1946; figure 1).  (a)  In  geometries ( 1 )  and (2), the director lies parallel to 
the plane of the shear and, quite intuitively, one understands that the flow exerts a 
viscous torque on the molecules. This torque tends to make the director rotate and 
when a3 is negative an equilibrium position is found with n nearly parallel to the flow 
lines (Leslie 1968). (a) When the director is perpendicular to the shear plane [geometry 
(3)] molecules feel no viscous torque and the nematic behaves much like an isotropic 
liquid. 
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FIUURE 1. Viscous torques exerted on the director in the three Miezowicz geometries: (1) rl = - a8 8 

(a,: 0 ) ;  (2) rt = aZ8 (aa < 0 ) ;  (3) rs = 0.  

Since case (b)  seemed less specific to nematics, it  has received much less attention 
than case (a). As to the cylindrical Couette flow which is of interest here, solutions 
of the hydrodynamic equations have been searched for by Atkin & Leslie (1970) and 
more extensively by Currie (1970). In  particular, Currie has pointed out that the flow 
is completely azimuthal if and only if n is either perpendicular or parallel to the 
rotation axis, which precisely corresponds to the distinction we have made above. 
Atkin & Leslie, as well as Currie, were only concerned with the search for solutions 
with n perpendicular to the rotation axis and did not tackle the problem of the stability 
of the flow. 

First studies of the stability of the Couette flow dealt with incomplete hydro- 
dynamic theories before the 1968 Leslie formulation; references may be found in a 
paper by Ericksen (1966). To our knowledge, no detailed theoretical approach has 
been worked out up to now. Several situations are possible depending on boundary 
conditions for the director and, more fundamentally, on the sign of the viscosity 
coefficient a3. Pieranksi & Guyon (1975) have examined the case ct3 negative when the 
nematic is tangential to the cylinder surfaces (‘planar ’ configuration). They have 
pointed out the mechanism responsible for an instability to  the Taylor type which 
couples inertial forces to viscous forces specific to nematics. Cladis & Torza (1975,1976) 
have performed experiments in homeotropic configuration (molecules perpendicular 
to the cylinder surfaces) using a nematic with a3 positive. They have discovered several 
instabilities ; however their interpretation has been questioned ( Pieranski & Guyon 
1976); indeed difficulties arise from the fact that, when a3 is positive, the director 
has no longer an equilibrium position in the shear plane (Pikin 1973; de Gennes 1972, 
1974; see also Currie 1970); moreover molecules can get out of this plane (Pieranski 
& Guyon 1974a) when the shearing rate exceeds a certain critical value (Pieranski, 
Guyon & Pikin 1976). 

Case ( b )  may seem much more trivial and one could have expected a simple trans- 
position of results concerning isotropic fluids. In  fact, this is not the case since the 
direction perpendicular to the shear plane is quite privileged and since any fluctuation 
away from this direction reveals the anisotropic properties specific to nematics and, 
in particular, the existence of viscous torques. Indeed, while the planar Couette flow 
(simple shear flow) is linearly stable for isotropic liquids (see for example Landau & 
Lifshitz 1959) this is no longer the case for nematics. The instability which takes place 
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follows from a constructive coupling between orientation fluctuations via the viscous 
torques (Pieranski & Guyon 1973, 1974b). A thorough theoretical approach has been 
developed recently (Leslie 1976; Manneville & Dubois-Violette 1976) which turns out 
to be in excelIent agreement with experiments (Dubois-Violette et ul. 1977); for a 
review see Manneville (1977). 

Up to now, experiments in cylindrical geometry have been performed as an extension 
of planar shear flow experiments. They have been interpreted using results for the 
planar case, but as will be seen later this was quite legitimate since the effect of rotation 
was negligible. In  this paper, we shall concentrate our attention on the modifications 
due to rotation, and moreover we shall restrict ourselves to the effect of rotation on 
instabilities specific to nematics. After a brief recall of the situation as it presents 
itself in the planar shear case, and in particular a rapid discussion of the instability 
mechanisms ( 5  Z), we shall write down the linearized hydrodynamic equations and 
discuss some simplifications (5 3). The inertial coupling between velocity fluctuations 
is best visualized in the case of isotropic liquids; it will be discussed in $ 4 together with 
a simplified model for the Taylor instability. This will help to explain the main 
difference with the case of nematics ( $  5) where orientation fluctuations play a dominant 
role. Finally, we shall make some predictions about the threshold value. This first 
qualitative approach will be completed by a more quantitative ‘approximate normal 
mode analysis ’ which rests on effective torque equations and simplified analytical 
forms for the fluctuation profiles (§ 6) .  Order-of-magnitude estimates will show that, 
unless very high rotation rates are achieved, the effects of rotation are rather weak 
on instabilities specific to nematics; nevertheless, possible application will be briefly 
discussed. 

For material with viscosity coefficient u3 positive and large, it is known that no 
stationary instability can take place. In  that case, we shall show in $ 7  that oscillatory 
instability can occur. 

2. Shear flow instabilities in nematics 
When n is perpendicular to  the shear plane [geometry (3) of figure 11 the nematic 

looks like an isotropic liquid. However, the study of the flow stability does not reduce 
to that for isotropic liquids. Indeed any fluctuation away from the direction of the 
unperturbed orientation feels a part of the viscous torques exerted in positions (1)  
and (Z), proportional to its amplitude. These torques tend to make the orientation 
rotate as indicated in figures 2 (a, b). Now as discovered by Pieranski & Guyon (1973), 
an instability may follow from the coupling between orientation fluctuation com- 
ponents through these viscous torques (figure Zc). Indeed, assume a fluctuation 
n2 > 0. It induces a torque r2 > 0 which tends to create a fluctuation n, > 0.  Now 
this fluctuation induces a torque rl which reacts on n2. The coupling turns out to be 
destabilizing when u3 is negative and stabilizing in the opposite case. When u3 is 
negative, the instability takes place only when the destabilizing mechanism is strong 
enough to overcome the stabilizing effect of the Frank orientational elasticity. Let us 
define the characteristic evolution time of orientation fluctuations: 

where y is the orientational viscosity, K a typical Frank modulus and q the wave 
vector of the fluctuation. 

7 0  = y/Kqz,  (2.1) 

10-2 
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FIGURE 2. Pieranski-Guyon instability mechanism: owing to the fluctuation n,, the shear flow 
exerts a torque r, on the director (a). This induces a fluctuation n1 as indicated on (c ) .  Owing to this 
fluctuation, a viscous torque F, appears, the sign of which depends on that of viscosity coefficient 
a3 ( b ) .  For a8 < 0, this tends to increase the initial fluctuation n, ( c ) .  

From a purely dimensional point of view, one can parametrize the flow by the 
Ericksen number Er = srO where 70 is evaluated for q N n / d ,  d being the cell thickness, 
and one can infer that the instability threshold s, will be given by 

s, 70 N 1 (where in our case 70 is typically of order 1 8). (2.2) 

The basic mechanism just described leads to a distortion which is uniform in the plane 
of the flow (homogeneous instability: Pieranski & Guyon 1973). However a second 
instability mode is possible with a distortion periodic in the direction of the unperturbed 
orientation. It isassociatedwith a secondary flow which takes the form of rolls pardlel 
to the flow direction (roll instability: Pieranski & Guyon 1974a). In  order to under- 
stand this kind of instability one has to take into account the contribution of velocity 
fluctuations to the viscous torques exerted on the molecules. In  fact, spontaneous 
velocity fluctuations are much more rapid than orientation fluctuations. Indeed the 
characteristic time of velocity fluctuations is 

where p is the densiky ( N 1 g/cm3) and 7 the viscosity. 
7, = P/W29 (2.3) 

If one compares this with the orientation fluctuation time 70, one gets 

7,/70 = pK/rq N (2.4) 
for typical values: y N 7 N 0.1 to 1 and K N 10" cgs. 

The evaluation could suggest that velocity fluctuations do not contribute to the 
instability mechanisms since they are not coherent over a sufficiently long time to be 
coupled with orientation. However, owing to the special form of the Leslie viscous stress 
tensor, in a shear flow, a non-uniform orientation induces a visww force P speci$c 
to nematics. The motion equation for velocity fluctuations may then be simplified as 

dv 
at p- = ' I ]Av+P,  

where Fv is very slowly varying (rate 7c1 < 7 ~ ~ ) .  Then one may consider that the viscous 
force Fv induces the slowly varying secondary flow v roughly given by 

y A v + P  N 0. 
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Now this flow is non-uniform and contributes to torques exerted on the molecules. 
This contribution appears as intercalated in the basic sequence of fluctuation 
amplification. 

Orientation fluctuation -+ (viscous force +velocity fluctuation +) 

--f viscous torque -+ orientation fluctuation. 

This implies the notion of effective torques taking into account the effect of secondary 
flows induced by an orientation fluctuation via the viscous forces; accordingly, one 
can define effective viscosity coeficients a: and a:. Then, the existence of a roll 
instability specific to nematics will be subject to the condition a: < 0, where 

. 
secondary flow effect 

af = a3-a1az/r2. (2.5) 

The instability remains specific to nematics and as a consequence the threshold is 
again given by a condition of the form (2.2). Now let us summarize the situation in 
the planar case. 

(a )  When a3 is negative, the homogeneous instability as well as the roll instability 
can take place since a: is also negative but the intensity of the mechanisms is different. 
The type of the instability which occurs can be monitored by a magnetic field applied 
along the direction of the unperturbed orientation which adds its stabilizing con- 
tribution to the elastic restoring torques. In  the absence of an external field and under 
weak fields, the elastic stabilizing contribution is dominant and since the periodic 
distortion associated with rolls implies a greater elastic expense, the corresponding 
threshold is higher than €or the homogeneous instability. Conversely, under high 
fields, the magnetic stabilizing contribution is dominant and rolls which correspond 
to the strongest destabilizing mechanism have the lowest threshold. Experiments 
have been performed using the well-known nematic compound MBBA (Pieranski & 
Guyon 1974a; Dubois-Violette et al. 1977) and the cross-over from the homogeneous 
instability to the rolls has been found to be in agreement with the sketchy description 
given above. 

(a) When a3 is positive, the homogeneous instability disappears and the rolls can 
take place as long as a3 is small enough [see (2.5)] : 

0 < a3 < ara2/v2. 

Experimental evidence has been given by Pieranski & Guyon (1976) using CBOOA, 
a nematic compound for which a3 + + 00 close to a nematic-smectic A phase transition. 

In the following we shall examine the particular contribution of rotation to in- 
stabilities which are specific to nematics, that is to say instabilities which result from 
a coupling between orientation fluctuations and occur at  a threshold roughly given by 

ScTo - 1 

(for the homogeneous as well as for the roll instability), where T~ is the time constant 
characteristic of the evolution of orientation fluctuations. Before we discuss the effect 
of rotation, let us specify the geometry of the problem, discuss some approximations 
and present the linearized hydrodynamic equations. 
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FIGURE 3. Geometry of the cylindrical Couette experiment: w1 and w z  are the angular velocities 
of the two cylinders. At the cylinders the director is aligned parallel t o  the rotation axis. no and 
YO are the unperturbed director and velocity fields; n, and n4 are the director fluctuaticns; U, v, 
w the velocity fluctuations. 

3. Linearized hydrodynamic equations 
Consider a cylindrical Couette experiment in the geometry of figure 3, where the 

nematic is enclosed between two long co-axial cylinders, the inner one with radius r l ,  
rotating a t  an angular velocity wl ,  and the outer one with radius r2 = rl + d ,  rotating 
at a velocity w2 = wl+6w,  In  addition, we assume that the cylinders have been 
polished such that the molecular alignment is fixed parallel to the rotation axis OZ 
(strong anchoring condition); a magnetic field applied parallel to Ox may come and 
reinforce this boundary effect. Then, in the unperturbed configuration this alignment 



Couette flow in nematic liquid crystals 279 

prevails in the bulk of the nematic and the velocity profile is that obtained for isotropic 
fluids. In  cylindrical co-ordinates (r,  $, z )  we have 

n: = n$ = 0, n," = 1, 

with 

v: = v," = 0, v$ = Ar + B/r,  

A = (w2 ri - w1 r:)/(rE - r;), 

B = (wl - w2)  r; r t / (r i  - r:). 

Now let us consider an orientation fluctuation 

an = (nr, n+, 01, 

sv = (u, v, w),  a velocity fluctuation 

and a pressure fluctuation &I. 
The complete set of linearized equations governing this infinitesimal perturbation 

is derived in appendix A within the framework of the Ericksen-Leslie-Parodi hydro- 
dynamic description of nematics. 

In order to simplify the mathematical analysis, we shall assume that, in all the 
following, the gap d is much smaller than the mean radius rm = #(r l+r2) .  (Since 
optical observations require thin samples (d 5 500,um) this 'narrow gap approxima- 
tion' is by no means a restriction unless one uses cylinders as small as those of Cladis 
& Torza 1975.) 

The angular velocity is 
wo(r )  = 4 - = A +B/r2, 

r 

dv$ v$ 2B 
dr r r2 * 

and the shearing rate is s(r)  = --- == -- 

In  the narrow gap limit one gets 

w&r) = w, + ( r  - r,) Sold, 

and s = rm6w/d, 

where w, is the mean angular velocity: w, = t ( w l  + wz).  Moreover we have 

2A = ~ o , + s .  

We shall restrict our attention to the case of axisymmetric fluctuations (i?/a$ = 0) 
since, at  the limit of the planar Couette flow, the distortion which takes place is in- 
variant through a translation in the direction of the flow (Pieranski & Guyon 1974b), 
i.e. the azimuthal direction in the present problem. Then the linearized equations read 

(a)  Torque equations : 



280 E .  Dubois- Violette and P .  Manneville 

These torque equations express the dynamic equilibrium of the director. The Frank 
elastic contribution to the total torque is easily recognized. The viscous part is the 
sum of three terms: the orientational viscous damping (viscosity y1 = a3-a2), the 
contribution of the induced secondary flows (u, v ,  w )  and the direct contribution of 
the orientation fluctuations (n, and 5). 

(6)  Force equations : 

These equations express the conservation of linear momentum. On the right-hand 
side, the viscous forces clearly contain two parts: (i) the anisotropic extension of the 
usual 7Av term present for isotropic liquids and (ii) the viscous contribukion linked 
to a non-uniform orientation. 

(c) Finally, one must add the usual continuity equation for an incompressible fluid: 

(3.7) 

At this point, one should develop a conventional 'normal mode analysis' (Chandra- 
sekhar 196 1) .  Instability thresholds and critical wavelengths would be obtained by a 
calculation parallel to the one Manneville & Dubois-Violette (1976) have performed in 
the planar shear case. Another point of view has been taken by V. A. Nye (private com- 
munication) at  Strathclyde University (Glasgow) who follows an approximate method 
due to Jeffreys (1928). Here we shall rather prefer a semi-quantitative approach 
which rests on a description of the instability mechanisms in terms of effective torques 
exerted on molecules. Before we extend the approximate model - already successfully 
developed for the planar shear case (Manneville & Dubois-Violette 1976; Dubois- 
Violette et al. 1977) - let us briefly review the case of isotropic liquids, which will make 
the comparison more transparent. 

4. Inertial coupling of velocity fluctuations 
The simplest description which contains the essentials of the Taylor instability is 

obtained within the framework of a one-dimensional model which neglects the radial 
dependence of the fluctuations (a thorough account may be found in Chandrasekhar 
1961). The hydrodynamic equations then reduce to 

Let us assume a tangential velocity fluctuation v. It induces a radial Coriolis force 

F," = 2 p ~ , v .  
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(0 ) ( b )  

FIGURE 4. Taylor instability mechanism: the Coriclis coupling. Owing to rotation, a radial velocity 
fluctuation u induces a tangential Coriolis force, the sign of which depends on that of the local 
vorticity 2A. Finally, the coupling is stabilizing for A > 0. Indeed, a fluctuation v > 0 induces a 
force 3’: > 0 which in turn induces a velocity fluctuation u > 0 ( b ) ;  then the tangential force 3’; 
tends to damp the initial fluctuation v. Conversely, if A < 0, this is destabilizing. 

This force tends to create a velocity component u. given by 

au 
at 

p - = 2pw0v. 

Now, with u is associated a tangential Coriolis force (figure 4a, b )  

Fc = -2pAu, 

which tends to modify the fluctuation v assumed at  the beginning. As explained in the 
caption of figure 4, the mechanism sketched above is locally stabilizing as long as 

Aw, > 0. (4.3) 

When Am, < 0 the mechanism is potentially destabilizing but the instability can take 
place only when it is strong enough to overcome the stabilizing effect of the diffusion 
of velocity fluctuations (viscous damping). As to the inviscid fluid, one can see that the 
fluid is stable when the two cylinders rotate in the same direction (so that w, does 
not change its sign) - say the positive one - and when 

A > 0 or w2r: > q r ; ,  

which corresponds to the Rayleigh criterion applied to the unperturbed velocity 
profile (3.1). In  a real fluid the viscous damping works such that the Taylor instability 
takes place only when A < A,  < 0.  
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The order of magnitude of the threshold value A, may be evaluated assuming 
wo 1~ om (this is consistent with the assumption that the two cylinders rotate in the 
same direction) and fluctuations of the form 

(u, v) = ( U ,  V )  sin (qz 4 exp (at), 

with qz - n / d  corresponding to roughly circular rolls. 
The compatibility condition of (4.1) and (4.2) reads 

(pa + qqz)2 + 4p2Aw, = 0, 

or a+ = - - q  2 ( - bAwm)B. 
P 

At the threshold one has a+ = 0 (stationary instability) and 

or, using the characteristic time T~ defined by (2.3), 

4A,wmrz = - 1. 

In  terms of the Taylor number (see Chandrasekhar 1961) 

T = - 4p2AU1 d4/q2, 

one gets T, = 2n4/(1 +p),  

(4.4) 

(4.47 

with ,u = oz/wl, in qualitative agreement with the exact result T, = 3416/(1 + p )  a t  
the limit p +- 1. 

Two parameters w1 and w2 are at our disposal. Assuming that one of these para- 
meters is kept fixed, the threshold condition (4.4l) gives the critical value of the other 
one. For example, assuming that the outer cylinder is at  rest w2 = 0, in the ‘narrow 
gap limit ’ one gets 2wm = w1 and 2A = 2wm + s = wl(  1 - rm/d)  2: - w1 rm/d so that, in 
terms of wl, the critical value is 

wlc = 7~~ (d/vm)&. 

When the two cylinders are rotating, instead of w1 and w2 one may prefer the mean 
velocity om and the velocity difference Sw or, even better, w, and the shearing rate s 
in view of the comparison with the nematic case where the instability mechanisms 
depend on s. Then the threshold condition (4.4l) may be read as an equation giving the 
critical shearing rate s, as a function of w,: 

2W,(20,+Sc)‘T~ = - 1, 

and one can distinguish a slow rotation ’ regime with 2wm rv < 1, where 

2wms, - - 1/r& 

from a rapid rotation regime with 2umrv > 1 and 

8, N - 20,. 

This distinction will remain for the nematic case but the behaviour of the threshold 
s, will turn out to be drastically different. 
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a, 

FIGURE 5 .  Nematic case. (a )  Homogeneous instability: the secondary flow (3) is unaffected by 
the Coriolis coupling. ( b )  Roll instability: the non-uniform orientation distorticn induces secondary 
flows in the plane perpendicular to the rotation axis to which correspond Coriolis effects a8 
discussed in figure 4. 

5. The nematic case in the slow regime 
5.1. Instability mechanism 

Let us now consider the case of nematics and examine first the homogeneous instability 
which can take place when a3 is negative. In  this instability mode, as explained by 
Leslie (1976), the only velocity fluctuation which couples to the distortions is the one 
parallel to the initial director orientation. In the present case this corresponds to a 
velocity pzrallel to the rotation axis (figure 5(a)), this fluctuation does not involve 
Coriolis forces and thus we do not expect any rotation effect on the threshold in- 
stability. Indeed this may be shown directly from (3.7) and (3.5). Assuming a/& z 0 
and taking into account boundary conditions on u and v, from (3.7), au/& = 0, one 
gets u = cst = 0. Then (3.5) simply reads: 

av a2v 
P-  = r 3 p  at 
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i.e. v is not coupled with the other variables and damps out; then, since v = 0, the 
only remaining term involving rotation, 2wov, disappears and we are left with the 
same problem as in planar geometry.? 

The roll instability (figure 5 ( b ) )  involves radial and tangential secondary flow. Since 
these flows are coupled by Coriolis forces as in the case of isotropic fluids, we expect 
the rotation to affect the threshold. In  the limit of the planar shear, the roll instability 
is stationary - that is to say that the distortion grows without time oscillation accord- 
ing to an exponential law of the form exp (at) with a real. The threshold corresponds 
to cr = 0, so we shall assume that the principle of exchange of stabilities also holds 
in the present problem. This greatly simplifies the equations since one may then forget 
all terms containing a,/&!. Moreover, in this approach we shall again neglect the radial 
dependence of fluctuations (one-dimensional model) and also, as in the isotropic case, 
assume that w&r) II wm. Then (3.4) and (3.5) simply read 

Recalling that orientation fluctuations play the dominant role, we assume 

(nr, = (N,,  Ni) cos (e 4- (5.3) 

(5.4) 

(5.5) 

(5 .6 )  

(5.7) 

This obviously leads to velocity fluctuations of the form 

(u, v )  = ( u, V )  sin (a, z),  

u = - (72 a'qf N+ + Zpwm(72 - 73) ~ r ) ,  D where 

v = -% (72(72-73) qf &- 'pAa"$), 

D = (q2 q f ) 2  + 4p2Aw,. 
As explained in 0 2, the stability analysis reduces to the study of effective torques 

exerted on the director. Neglecting the radial dependence of fluctuations the torque 
equations (3.2) and (3.3) reduce to 

a2ni av 
= 0 = -Ka- +a2az+a2snr, 

One obtains the effective torque equations by replacing the velocity components u and 
v of (5.4) in (5.8) and (5.9) using (5 .5)  and (5.6). They read 

(5.10) 

t This result does not depend on the narrow gap approximation as can be seen from (A 4) and 
(A 7) given in appendix A. 
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One recognizes in the first terms of (5.10) and (5.11) the elastic contributions and 
Coriolis corrections. The second terms look like those in the planar case: they corres- 
pond to a renormalization of the viscosities a2 and a3. The threshold expression is 
obtained by writing the compatibility condition of system (5.10) and (5.11). In  the 

(5.12) 
planar case this gives the condition 

sT0-  1. 

In the present case one will obtain a relation involving both s and w,. As s is the per- 
tinent parameter in nematics, one had better consider the threshold as a function 
s(w,). If one looks a t  (5.10) and (5.11) one can see that the parameter involving the 
rotation is w, T,, where 7, = p/(n2 q3) and that 

2A7,  = ( ~ w , + s ) T ,  = ~ W , T , + S T ~  . (5.13) 

As in nematies 7,/r0 < 1, for shear rates corresponding to the instability threshold 

(5.14) 
wo N 1 one gets 

Expression (5.7) now reads 

(3 
2A7, = 2 ~ ~ 7 ~ .  

D = ( 7 z q 3 ) 2  (1  + (2wm7v)2)- (5.15) 

Clearly two different regimes appear: a slow rotation regime corresponding to 
2w,r, < 1 and a fast one for 2w,rv % 1. In this section we shall consider the slow 
regime (w,r, < 1) for which (5.14) is valid. (This excludes a very slow regime char- 
acterized by 2w,rO < 1 for which the complete expression (5.13) should be used.) In 
this limit D reduces to ( T 2 q z ) 2 .  Returning to (5.10) and (5.11) one sees that the second 
terms are unchanged relative to the planar shear case. The rotation effect only appears 
in the first$erms, which we shall now examine. 

Let us first consider the case of a purely radial orientation fluctuation (4 =# 0, 
A?+ = 0). Then (5.1) and (5.2) read 

- 2pwm v = - T 2  q; u, (5.16) 

2pwmu = -729; v 7 ( 7 2 - 7 ] 3 ) % s N , .  (5.17) 

The limit wmrv < 1 implies that the left-hand side of (5.17) can be neglected. Then one 
obtains 

(5.18) 

as in the planar case. Now, owing to the Coriolis force, this fluctuation creates a radial 
velocity fluctuation (absent in the planar case) given by (5.16) : 

(5.19) 

This radial flow is not uniform in space and exerts a tangential viscous torque com- 
ponent on the molecules: 

r; = a2 e) (20,7,) SN,. 
72 

(5.20) 

This contribution is destabilizing for usual .nematics with a2 < 0 and v2 > q3 when 
oms < 0. For w, > 0 this corresponds to the inner cylinder rotating faster than the 
outer one (6w < 0 * w1 > w2, figure 6). 
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FIGURE 6. Coriolis contribution to the instability mechanism in a nematic: an inhomogeneous 
radial fluctuation n, induces a viscous force FV which creates a velocity fluctuation v. When 
wl > wg, the Coriolis coupling induces a radial velocity u. The corresponding shear rate au/az 
tends to increase the initial orientation fluctuation. 

A parallel analysis could be performed in the case of a purely tangential orientation 
fluctuation (N+ =+ 0, N, = 0) and would lead to the same conclusion. Indeed one would 

(5.21) 

This also corresponds to destabilizing torque when 0,s < 0, since a’ = *(a, +a2) < 0 
in general. In  order to get an estimate of the threshold one has now to consider the 
coupling between N, and N+ as described by the effective torque equations. 

5.2. Threshold 

Let us write the effective torque equations (5.10) and (5.11) in terms of dimensionless 

(5.22) quantities : 

(5.23) 

x = ST0 = 81a2a314/K3q:, 

Y = 2w,7, < 1 

and = 1a3/a2Ii, 8 = sgn{%/a,}, 

and 21 = h,u+v/h = ag/72/a2a3/i. 

a2 is negative but a, may be positive (8 = - 1 )  as well as negative (8 = + 1); in addition 

we have pu>O and O < v < l .  
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Using these notations, the effective torque equations read 

1 
( l + A p x Y ) N $ - h ( l - v ) x N r  = 0, 

287 

( l + Y ) N r - A ( S + p ) X N $ =  0, 

(5.24) 

(5.25) 

and the compatibility condition is 

( l + h p X Y )  (I+?) = X 2 ( l - v ) ( S + p ) ,  

or, after reduction, X 2 ( l - v ) ( S + p ) - 2 1 X Y - 1  = 0 .  (5.26) 

Roots of (5 .26)  give the critical shearing rate X ,  as a function of the overall rotation 
measured by Y .  This equation has two real roots as long as 

A' = Y212 + ( 1  - Y) (S  +p)  > 0. 

1,  v, p are of order 1 and since Y < 1 this implies S+p > 0. This is always the case 
when S = + 1 (i.e. a3 < 0). When a3 is positive (8 = - 1 )  this condition impliesp > 1 or 

a3 < a'a2/7l2, 

which is precisely the existence condition for a roll instability in the planar case ( 9  2 ) .  
When this condition is fulfilled, roots of (5.26) are easily found: 

(5.27) 

The threshold variation is proportional to Y = 2wmrv and the proportionality co- 
efficient El( 1 - v) (S + p )  is of the order of 1.  In  agreement with the analysis of mech- 
anisms, it may be checked that, when the outer cylinder rotates faster than the inner 
one, one has s > 0 (with w, > 0) or X > 0 (with Y > 0) and the rotation has a stabilizing 
effect : 

when the inner cylinder rotates faster one has X < 0 and the destabilizing contribu- 
tion of rotation corresponds to a lowering of the threshold: 

0 < X C + ( O )  < Xc+(Y);  

X,-(O) = -X+(O) < XC-( Y )  < 0, 

lXC-(Y)l < IX,-(O)l. that is to say 

Remark 1 :  Ultra-slow regime. In  contrast to the case just examined, in the ultra- 
slow regime one cannot neglect s compared with w,. This leads to modifications as is 
illustrated by the caae where the inner cylinder is at  rest. Then s = 2 0 ,  rJd ,  

2A = s N rcl (for an instability specific to nematics), 

The terms involving the rotation disappear completely as one can see in the effective 
torque equations (5.10) and (5.11).  For example, let us just explicate the form of the 
first term of (5.10): 

a2 a'q: 2pAs 
K3&+ D N K ,  qz( 1 + s2rv To) N K ,  4:. 
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Interpretation of the experiments by Dubois-Violette et al. (1977) is then completely 
justified despite the use of a cylindrical geometry (however, notice that, if correci5ons 
due to rotation were perfectly negligible, corrections linked to curvature should have 
been taken into account since the aspect ratio d/rm N 0.16 was not small enough to 
justify a narrow gap approximation). 

In  this ultra-slow regime, o o ( r )  cannot be considered as a constant since 6w is of 
order om. But the effects of rotation are negligible. In  all other cases wo can be taken as 
a constant since now 

0 <Ti1 < 2wm. 
d d  

&I= - 8  N -7-1 
rm rrn 

Remark 2:  Limit of the one-dimensional model. From a dimensional point of view 
the wave vector qs of the unstable mode must be related to the gap d through the 
boundary conditions imposed at the cylinders. The model developed so far implicitly 
assumes q, - n l d  but roughly constant. 

In order to get the true spatial dependence of the instability mode, one needs a 
bi-dimensional analysis. In  particular, in the case of the fast rotation regime this 
one-dimensional analysis would be misleading since the wavelength dependence will 
appear to be crucial. 

6. Bi-dimensional analysis 
The simplified approach developed above must now be completed to take into 

account the radial dependence of the fluctuations and the associated boundary 
conditions. Such an analysis has already been performed in the case of the planar 
Couette flow. With regard to the homogeneous instability which can take place when a3 
is negative and which is not modified by rotation effects, in the narrow gap limit, the 
threshold will have the same value as in the planar cme (Manneville & Dubois- 
Violette 1976; Leslie 1976). Using the definition 

which makes an explicit reference to the gap d ,  we have 

X, = If: 0.936, 

where the ~f: sign depends on which cylinder rotates faster. In  fact, the threshold 
weakly depends on the ratio The value reported above corresponds to MBBA 
at 25 "C. 

For the roll instability the exact 'normal mode analysis' is far more tedious. 
Happily an ' approximate ' normal mode analysis has been shown to lead to excellent 
quantitative agreement for the plane Couette flow (Dubois-Violette et al. 1977). 
This approximate analysis essentially assumes a simplified form for the unstable 
normal mode and leads to a discussion in terms of effective torques. For the present 
problem, the simplified normal mode reads 

(mv  (%, N#) cos (q,(r-rm))cos(Qg) ~ X P  ( ~ t ) ,  (6.2) 

where q+ = n/d in order to fulfil the boundary conditions n, = n4 = 0 imposed at  the 
cylinders ( r  = rm f $d) .  The stationary instability corresponds to Re C= 0. The 
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wave vector qz is left free to adjust to the optimum value resulting from the com- 
petition between the destabilizing viscous torques and the stabilizing elastic ones. 

It can be checked that (6.2) leads to a radial velocity profile 

u = usin (q,(.-rm)) COB ( q p ) ,  

which does not fulfil the boundary condition u = 0 at the cylinders. In  fact, the exact 
distortion profile is a superposition of five modes qi such that 

n+ = I: N~cos(q~(r-r,))cos(q,z). 

Among these modes, one (say q:) is very close to n/d and roughly gives the aspect of the 
distortion profile ( j  4 1 + N$ < N ; )  apart from a narrow layer close to the walls where 
the role of the other modes becomes important in order to fulfil all boundary conditions 
and, more especially, the one relative to the radial velocity u (see figure 11 in Manneville 
& Dubois-Violette 1976). The existence of this dominant wave vector q: - n / d  is 
another facet of the dominant role of the orientation fluctuations n, and n$ which 
have a prior right for the fulfilment of boundary conditions, so that assumption (6.2) 
turns out to be quantitatively well justified. 

As we have seen above, except in an ultra-slow rotation regime (to which belongs the 
case with one cylinder at  rest) where rotation effects are completely negligible, we can 
neglect the radial dependence of wo(r)  and merely assume wo(r )  N w,. Then all the 
coefficients of the differential system are constant. The extension of the approximate 
model to the cylindrical case is then straightforward and should lead to quantitative 
results for the roll instability. 

The sequel of the discussion consists of (a )  a derivation of effective torque equations 
from (3.2) and (3.3) through the elimination of all variables except n, and n$ as given by 
(6.2) and ( b )  the detailed examination of the corresponding compatibility condition 
which will give the critical wave vector qB and the threshold s, as functions of w,. 

Effective torque equations are given in appendix B, and for the stationary instability 
(CT = 0) they read 

j=1 

(f$ - ZAss) N$ + (a; s) N, = 0, 

(f, - ZW, ~ 8 " )  N, + (a: S) N$ = 0. 

The compatibility condition is 

a; a: s2 = (& - 2wm S8)  ( f, - 2w, S€"). 

In  addition to X given by (6.1) we shall define 

Y = 2w, (!)2, 
7 2  n 

and we shall measure wave vectors in units of q, = n / d :  

Q = d q r  = dqz/n- 

Equation (6.3) may be written as a relation between X, Y and Q of the form 

A(  Y, Q )  X 2  +B(Y,  Q )  X +  C ( Y ,  Q )  = 0, 

which generalizes (5.26).  Y being kept fixed, the threshold corresponds to the minimum 
of X as a function of Q. In general this equation will have two real roots X* and we 
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FIGURE 7. Critical curves for different (reduced) rotation rates Y when a3 < 0. X is the reduced 
shearing rate and Q the reduced wave vector, the minimum a t  Q = 0 corresponds to the homo- 
geneous instability. The threshold of the roll instability corresponds to the minimum of X as a 
function of Q + 0. 

shall get two thresholds, one for X, > 0 the other for X -  < 0 corresponding to the 
minimum of I X*I. The qualitative analysis suggests separating the cases witha, positive 
or negative. So we shall study first the case a3 < 0 and more particularly the applica- 
tion to MBBA.? Afterwards, we shall turn to the case ag > 0. Since it is rather difficult 
to get the complete set of viscoelastic constants for a nematic of this kind, we 
prefer to limit ourselves to the case a3 small and perform the calculation for a fictitious 
nematic having the same viscoelastic constants as MBBA except a,, which changes 

t We shall use viscosities given by Gahwiller (1973). 
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sign. In  fact a3 is linked to the other viscosity coefficients by an Onsager relation 
(Parodi 1970) but since a3 remains very small we shall neglect the effect of the sign 
change on the other viscosities. 
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6.1. Eflects of the rotation when u3 is negative 

When a3 is negative the homogeneous instability takes place at a critical shearing rate 
which is not modified by the rotation. In  figure 7, where X is plotted versus Q for 
different Y values, this corresponds to the point at  Q = 0. However, the threshold is 
not well evaluated by the approximate model and one should prefer the exact value 
reported above (Xc* = j~ 0.936). Anyway, it corresponds to a branch of curve defined 
for Q < 1. In contrast the roll instability corresponds to the minimum of a second 
branch defined for Q > I. As long as Y is small enough these two branches are well 
separated by a region where 01; given by (€3 9) is positive (i.e. where the fundamental 
instability condition a: < 0 is not fulfilled). When Y increases, the separation region 
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FIGURE 9. Critical wave vector Q, as a function 
of the rotation rate Y for ug < 0. 

Y 

disappears ( Y  > 1.7), the minimum corresponding to rolls becomes less and less 
pronounced and disappears completely at  Y N 1.8 for X ,  and a t  Y N 4 for X- .  
Considering the result of the exact bi-dimensional analysis obtained in the plane shear 
case (Manneville & Dubois-Violette 1976) one may question the quantitative char- 
acter of the approximate normal mode analysis when the minimum at Q > 1 is no 
longer pronounced. The description of the rapid rotation regime is then not very 
reliable but should be qualitatively correct and a roll instability is not to be expected 
for Y B 1. In figures 8 and 9, we have plotted the thresholds X,,  and the critical wave 
vectors Q, of the rolls as functions of the mean rotation measured by Y .  The part 
of the curves drawn with dashes should be confirmed by an exact calculation. 

In the slow rotation regime Q, does not vary much (figure 9), which explains the 
agreement with the qualitative analysis given in 0 5.  From figure 8 we deduce that the 
homogeneous instability represented by the straight horizontal lines X ,  = k 0.936 has 
always the lowest critical value, so that we never expect to observe the roll instability 
when increasing the overall rotation w,. This situation should remain in the presence 
of a small stabilizing field applied parallel to the rotation axis 02. However, in the 
planar shear case a cross-over from the homogeneous instability to the rolls is expected 
when the field strength increases. In cylindrical geometry the addition of an overall 
rotation will then shift the value of the cross-over field H,, decreasing H, when X is 
negative (destabilizing effect which favours the rolls), increasing it in the opposite case. 

6.2. Ejj'ect of rotation when a3 is positive and small 

When a3 is positive the branch defined for Q 5 1 disappears and one is left with the 
branch corresponding to rolls as can be seen on figure 10. It must be noticed that, when 
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FIGURE 10. Critical curves for different rotation rates 
Y when u3 > 0. Only rolls can develop. 

Y increases, the domain where this branch is defined is pushed towards large values 
of Q. This may be easily understood from an expansion of a$ given by (B 9) retaining 
only leading terms in Q2. The condition a: < 0 may be written as 

pQ4/(Q4+ Y2) > 1, (6.4) 

where P = a2a'/rl2a3, 

(6.4) also reads (P- 1)  Q4 > Y2, (6 .5 )  

which implies ,a > 1 or a3 < as, as = a2a'/r2, i.e. the existence condition for inst- 
abilities specific to nematics in the planar case. 

Numerical results are given in figures 11 and 12, where one can recognize a slow 
rotation regime analogous to the one for true MBBA (with a3 < 0). For the rapid 
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-10 

FIGURE 11. Threshold X ,  as a function of the rotation rate Y for us > 0. Notice that, taking 
into account the scale change, the slclpe of the two curves are the same at Y = 0. 

rotation regime Y > 1 the minimum is well pronounced (contrary to the a3 < 0 case) 
and the approximate analysis is satisfactory. As we could have inferred from (6.5),  an 
expansion of the compatibility condition leads to the asymptotic regime 

IX,l= Y )  (6.6) 

with Qc= y t ,  (6.7) 

where the proportionality constants are of the order of 1 but different for positive and 
negative solutions. As to this regime, another difference from the case of isotropic 
liquids may be pointed out. In  this latter case, the rapid rotation regime corresponds 
to s, = - Zw, or with the present notations 

x, = scro = -2w,r, = -2w,rv- ' 0  

TV 
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FIGURE 12. Critical wave vector Q, as a function of 
the rotation rate Y for a, > 0. 

but this time the proportionality constant is very large, of the order of 106. Moreover 
the Taylor instability takes place only when X is negative (inner cylinder rotating 
faster) contrary to the present case where the instability specific to nematics takes 
place even when the outer cylinder rotates faster (X > 0). From the point of view of 
the mechanisms, one would like to have a simple picture of the asymptotic regime 
(6.6), (6.7) as was the case for the slow rotation regime ( $ 5 ) .  However, this seems 
difficult to obtain since the threshold value derives from a delicate balance between 
different contributions where the value of the wave vector plays a crucial role. 

7. Oscillatory instability 

condition for a stationary instabiIity is 
When a3 is positive it has been shown in $6.2  [equations (6.4)-(6.5)] that the 

a3 < aZ, 

We now consider the case a3 > az and examine the possibility of an oscillatory 
instability. Thus we look for fluctuations of the form (6.2) with (r = cr'+icr" and 
cr" + 0, cr' = 0 corresponding to the threshold. Force and torque equations are given 
in appendix B. 

From a general point of view one can say that when the basic mechanisms are 
stabilizing for a stationary regime they can nevertheless induce global destabilizing 
effects if there are adequate phase-shifts between the different contributions. A simple 
and illustrative example is given by Lekkerkerker (1977) in the case of thermal 
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instabilities in nematics. Here, for example, looking at  the radial force equation (B 3 )  
one sees that now the contribution of the two fluctuations n$ and n, have a phase 
lag of an and that v is in phase with n$. Returning to the radial torque component 
(B 1 )  it appears that an instability can take place if the stabilizing elastic contribution 
due to n6, in phase with n,, is cancelled by the viscous destabilizing one due to the 
velocity fluctuation v (induced by the Coriolis effect). 

We shall not go into details but just give the two effective torque equations obtained 
after elimination of p ,  u, v, w between the force and torque equations (B 1)-(B 6 ) .  At 
threshold ((T' = 0 )  they read 

(iy6 (T" +f6 - 2w, S E )  N6 + (a: s + 2 i0 ,  a" E') N, = 0, 

(iy, (T" +f, - 2w, sd') N, + (a; s - 2 i0 ,  a" E') N$ = 0,  

(7 .1)  

(7 .2)  

where the different parameters are defined in appendix B. In  these expressions we 
have set 2A = 20,; this excludes the case of the ultra-slow regime. 

- (y, y+ + 4 0 k  E ' ~ )  (T" + ia"(y,f6 + y$f, - 2 0 ,  s(sy, + d'y+ 

The compatibility condition of (7 .1)  and (7 .2 )  reads 

+ €'(a; - a:)) + (f, - 2w, SE") (f$ - 2 0 ,  S E )  - a; a; s = 0. (7 .3 )  

Since (T' is real this implies that the imaginary terms of (7 .3 )  are zero. This gives the 
critical condition 

%f$4+?$f, = 2@,~(%+E"&4+E'(4  -4). 
The expression of the right-hand side may be simplified to give 

where 

Equation (7 .4 )  defines the critical condition for the oscillatory instability in the 
same way as (6 .3 )  for the stationary case. The numerator of (7 .4)  is always > O .  In  
fact it  is obvious in equations (B lo), (B 1 1 )  and (B 12) that D, f+, f, > 0. As to y$ 
one has 

since one recognizes the bend viscosity rB = y1 - (a;/r,Q, which by virtue of thermo- 
dynamic inequalities (Leslie 1968) is always positive. The case of yr is similar. Depend- 
ing on the value of the viscosity coefficient a3 one obtains an oscillatory instability 
with s > 0 (outer cylinder rotating faster than the inner one) for a3 < and s < 0 
for a3 > a;,. The threshold value corresponds to the minimum of s as a function of q,. 
Using the dimensionless parameters defined in Q 6 it is defined by 

ax _ -  
aQ -" 
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where f j  is an effective viscosity and P is a polynomial of the fourth degree in Q2 of 
the following form: 

Lo + (&+.Mi Y 2 )  Q2 + (L2 + M2 Y 2 )  Q4 +L, Q6 + L, Q8, 

where the different coefficients depend on the value of the viscoelastic constants. To 
predict a precise value of the threshold one should know the exact experimental values 
of the viscosity. Nevertheless, one can deduce scaling laws for the threshold. Equation 
(7.6) defines the critical wave vector Q, and, in the limit of slow rotation ( Y  < 1), 
Q, is roughly independent of Y .  The threshold is given by 

7? P(Q%O) x, = 
(4i-a3)  YQ: * 

On the other hand, in the limit of high rotation ( Y  % 1) one gets 

and 

Once the threshold value is known one can obtain the period of the osciIIations from 
the real part of (7.3) which relates B” to w, (or Y ) ,  s, (or X,) ,  and qz (or Q,). It turns 
out that B” N s, and in both cases Y 9 or < 1, B ” T ~  < 1, which justifies the neglect 
of the inertial terms p(av,.at) in the force equations. 

8. Conclusion 
In  this paper we have studied the stability of the Couette flow of nematics when 

the unperturbed orientation is parallel to the rotation axis. This problem is quite 
specific .to nematics and is very far from the classical Taylor problem in isotropic 
liquids. Indeed the main destabilizing mechanism results from a constructive coupling 
between fluctuation orientations via the viscous torques. The relevant flow parameter 
is the shearing rate and the threshold is roughly given by 

x, = SCTO N 1, 

To = yd2/Kn? 

where T~ is the relaxation time for orientation fluctuations over distances of the order 
of the gap d : 

Optical observations require thin fluid films (d  5 500,um); for a typical nematic with 
y N 0.1 to 1 P and K N 10-6 dyne, this leads to quite large T ~ ,  typically of order 1 to 
10s for our problem, and accordingly to very low thresholds. In  the case of isotropic 
liquids, the destabilizing mechanism involves an inertial coupling between velocity 
fluctuations via the Coriolis forces. Then the relevant parameter is, rather, a mean 
rotation rate w, and the threshold is very roughly given by 

y, = 2wg7, N 1, 

where T, is the relaxation time for velocity fluctuations : 

T, = pd2/7n2. 
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In  the same experimental conditions as before, this corresponds to about 10-2s and 
consequently to high rotation rates w, N 102s-1 or 10 cycles/s. 

In  the present problem the effect of Coriolis forces appears coupled to specific 
mechanisms of nematics as is summarized in the following sequence: 

Orientation fl. --j. viscous force -+velocity fl. -+ Coriolis force -+ 

velocity fl. -+viscous torque -+ orientation fl. 

To evaluate the effect of the rotation the proper parameter remains Y = 2w,r,,. 
This leads us to define a slow rotation regime ( Y < 1) and a rapid one ( Y > 1). HOW- 

ever, owing to the order of magnitude of r,, the rapid rotation regime seems difficult 
to achieve. So the detailed mechanism has been examined for a slow rotation. It turns 
out to be destabilizing when the product 2w,s is negative. Several different cases 
may be distinguished according to the sign and the precise value of the viscosity co- 
efficient a3. 

First of all the inertial (Coriolis) coupling of velocity fluctuations only affects the 
rolls and not the homogeneous instability (which can only take place when a3 is 
negative). The corresponding homogeneous instability threshold is then constant. At 
least, for MBBA and in the absence of external fields, the homogeneous instability 
is expected a t  all rotation rates. Under high enough magnetic field one should observe 
a change of the cross-over field between the homogeneous instability and the rolls. 
The case with a3 > 0 seems equally promising. The homogeneous instability no longer 
takes place but the rolls still remain as long as a3 is small enough and the modification 
of the threshold by rotation should be observable. 

Now one should notice that the variation of the cross-over field H, when asisnegative 
as well as the variation of the threshold when a3 is positive is very small unless high 
enough mean rotation rates are achieved. First, when one of the cylinders is a t  rest 
corrections are of the order of rv/ro N 10-5 and then completely negligible. Outside this 
‘ultra-slow rotation regime ’ corrections remain usually small. Indeed in the ‘slow 
rotation regime ’ the correction to the threshold As due to the rotation is scaled as 

As - N 2w,rv, 
lscl 

and As/IscI N 10 yo already requires a high mean rotation (of the order of 1 cycle/s). 
The ‘rapid rotation regime’ involves very high rotation rates and so the asymptotic 
regime when a3 is positive seems unlikely to be observed. 

In  isotropic liquids the Coriolis coupling is responsible for the Taylor instabglity . 
In nematics we have studied the modification of the threshold of an instability which 
precedes in the same way as one studies the effect of a rigid-body rotation on the B6nard 
instability in isotropic liquids (see Chandrasekhar 1961). Indeed everything happens 
as if one superimposes a large rigid-body rotation a t  a rate w, ( 5  r;l) on a small 
differential rotation 8w = sd/r ,  ( N (d/r,) rcl) responsible for the instability. Of 
course since the rotation effect is proportional to 2w,s, the result is sensitive to the 
direction of the overall rotation. When the external cylinder rotates faster the mech- 
anism is stabilizing and the threshold increases; when the situation is reversed the 
threshold decreases but the instability exists in the two cases (which is again different 
from the Taylor case). 
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When a3 is positive and large, the Pieranski-Guyon mechanism is stabilizing even 
for rolls. A first qualitative analysis in terms of effective torques suggests that an 
oscillatory (roll) instability is possible; the threshold corresponds to a balance between 
elastic restoring torques and destabilizing Coriolis contributions. The oscillatory 
character comes from the over-stabilizing effect of the Pieranski-Guyon mechanism. 

For the moment, experiments performed in cylindrical geometry concern either the 
present problem (n parallel to the rotation axis) but in a case where rotation effects are 
completely negligible (Dubois-Violette et al. 1977) or another orientation configuration. 
In  particular, Cladis & Torza have examined the case of a nematic with a3 > 0 and 
homeotropic boundary conditions. Contrary to appearances, our present study may 
not be completely irrelevant since they have observed several intermediate configura- 
tions before a well-organized 'Taylor ' roll pattern. As one of these intermediate states, 
we may expect a situation where molecules are parallel to the rotation axis everywhere 
except in a narrow layer close to the cylinders. This situation would result from a 
Pikin instability (Pieranski, Guyon & Pikin 1976) and would be quite compatible with 
the 'isotropic-like' velocity profile they presented in their 1975 paper. So our results 
might be extended to this case. 

Anyway, our first results lead to predictions which ask for an experimental check 
for the stationary instability as well as for the oscillatory instability. 

The authors would like to thank P. G. de Gennes, E. Guyon, F. M. Leslie, V. A. 
Nye and P. Pieranski for very stimulating discussions. 

Appendix A 

Leslie-Parodi equations of nemato-dynamics read: 
In  orthogonal curvi-linear co-ordinates and under co-variant form,t the Ericksen- 

(i) Acceleration equation 

dvi d a  
P - = - Sii'p, j + d i , j  where - = - + v .  V, 

dt at dt 

and with 

The reversible part v f i ( e )  is given by 

= &(e) + &v). 

where 

is the Frank elastic energy (Frank 1958). The viscous part 
stress tensor (Leslie 1968) 

P = i{K,(div n)2 +K2(n  . curl n)2 + K3(n x curl n)2} 

is given by the Leslie 

di(") = a4 Aii + a, nfni(nk A%,) + a2 niNi + a3 Nfni + a(, d ( n k  Aki) + ag(nk Aki) ni, 

with Aji = 8(vi,j+vj,i),  

and 
dn 

N=-- i ( cu r lv )xn .  dt 

t Viand Virespectively denote the co- and contra-variant components of a vector V .  f, i denotes 
the co-variant derivative relative to the curvi-linear co-ordinate &. 
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(ii) Angular momentum conservation leads to a balance of torques exerted on the 

rco = r( e) + p) = 0. 

Fe) = n x h, 

molecules 

The elastic part fie) is given by 

where the 'molecular field' components read 

The viscous part I'@) is related to the antisymmetric part of the Leslie stress tensor 3'): 

P)= -nx(ylN+y2A.n) 

with y1 = a3-a2 and yz = a6-a6 = a,+a, (Parodi 1970). 
The continuity equation for any incompressible fluid reads 

divv = 0. 

In  the following, we shall write equations governing the physical components of a 
fluctuation in cylindrical co-ordinates. The velocity fluctuation components will be 
u, v and w, the pressure Sp and the director fluctuation component n, and n+ (not to be 
confused with the previous notation for co-variant quantities). Zeroth order gives the 
unperturbed quantities : 

- 

a2vo 1 a.8 v8 O = -  ar2 +---- 
r ar r2 

leads to 

and 

B v$ = Ar+- 
r '  

to the unperturbed pressure. 
Let us denote 

and 



that is to say that we may neglect terms like f / r  of order of f / r m  when compared with 
afjar of order f/d. 
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Note 2: Equations (3.2)-(3.7) derive from (A2)-(A 7) when assuming an axisym- 
metric fluctuation (a/@ = 0) and denoting 

a,+a, = ql --T3 ( < o for MBBA), 2 

a6 -- + "2 - a' ( < 0 for MBBA). 
2 

Appendix B 
For fluctuations of the form 

(nr, n$) = (Nr, N$) cos (qr(r - r m ) )  cosqzzexp at, 

(v, w )  = ( V ,  W )  cos (qr(r- r,)) sin qz z exp at ,  

(u) = U sin (q,(r - r,)) cos qz z exp at, 

(Sp) = Psin(qr(r--rm))sinqZzexpcrt, 
one gets: 

Torque equations 

(7'1 a+ K2 q7" + K3 a:) N$ + a 2  q, V + a 2  a = 0, 

(7'1"+K,q9+K3q2,)Nr-azqzU-a3qr W+a,sN$ = 0. 

2p0, V - q, P - (qz q: + ("'9) U - qz(a'sN$ + a2 aNr) = 0,  

u - ( r 2  4; + 73 $ 1  v-qz((T2-73) s'%+a2 q, N$ = O, 

-qzP-  (r'qf $ 1  W-qr((71-73) sN$ + a3 a)  N = 0. 

(B 1) 

(B 2 )  

(B 3) 

(B 4) 

(B 5 )  

Continuity equation qr u+qz  W = 0, (B 6) 

Force equations 

- 

where the inertial contributions of the form p(av,/at) have been neglected in the force 
equations. 

The elimination of U ,  V ,  W ,  P leads to the effective torque equations 

(7'$ a +f$ - 2Ass) N$ + (a$ s + 2Aad) N, = 0, 

(7, a + f r  - 2w, SB") N, + (a,* s - 20, ad) N$ = 0, 

(B 7) 

(B 8) 

where 
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